

Capteurs aéroportés à l'ONERA couvrant le domaine electromagnétiques pour l'étude des surfaces continentales

P. Dubois-Fernandez,
X. Briottet, P. Chervet, P. Déliot,
P. Dreuillet, J. Duffaut, Y. M. Frédéric,
J.F. Nouvel, O. Ruault du Plessis

ONERA

THE FRENCH AEROSPACE LAB

return on innovation

Plan de la présentation

- Rappel sur l'ONERA
- Les équipes impliquées
 - Radaristes et optroniciens
- Deux porteurs aéroportés
 - BUSARD sur Stemme motoplaneur
 - SAR Ka, SAR X, Caméra FLIR
 - SETHI sur Falcon 20
 - SAR bande UHF/VHF, L, X
 - Caméra hyperspectrale HySpex VNIR
 - Caméra de contexte CamV2
- Exemples de campagnes d'acquisitions

ONERA: Le centre français de recherche aérospatiale

Force d'innovation, d'expertise et de prospective pour l'industrie, l'État et l'Europe

- Épic créé en 1946
- Tutelle du ministère de la Défense
- 2 048 personnes
- 215 doctorants et post-doctorants
- 202 M€ de budget
- 35 M€ d'investissements
- 61 % d'activité contractuelle
- 1^{er} parc de souffleries en Europe
- Un institut labellisé Carnot

ONERA

ONERA en France

Département Electromagnétisme et Radar

Département Optronique et Techniques Avancées

Activités Radar imageur au sein du DEMR

ONERA

Activités imagerie optique au sein du DOTA

ONERA

Les activités 'radar aéroporté' de l'ONERA

BUSARD motoglider

Payload capacity:

Airworthiness for 2 pods 60 kg max per pod Power: 1500 Watts (28 VDC)

F-COSP

STEMME (Ge)

Motoglider with two seats Wingspan: 23 m Speed: 100 nds (200 km/h) Range max: 1200 km (or 7h) Altitude max: 12000 ft

- Radar imageur SAR en bande Ka
- Radar Imageur SAR en bande X
- Caméra FLIR A325

Responsable instrument: jean-francois.nouvel@onera.fr

DRIVE: SAR à 35 GHz

Radar :

- Altitude: from 300 up to 4000 m.
- Incidence angle: from 90° to 0° (nadir).
- Speed : 40 m/s.
- Swath: up to 1000 m.
- Antenne aperture (-3 dB) :
 - sounder mode: 4°.
 - SAR mode:
 - El: 27 °.
 - Az: 4°.
- Centre frequency : 35 GHz.
- Bandwidth: up to 800 MHz.
- Power (CW): 2 watts
- PRF: 1250 Hz or 2000 Hz
- Storage: SATA II (400 Gb)

BUSARD: Architecture

DRIVE: SAR image examples at 35 GHz (incidence angle: 75°)

DRIVE: SAR image examples at 35 GHz (incidence angle: 70°)

ON

and have been and a summarial of the

Air Force Base

Resolution : 30cm Swath : 700m

Ka interferometry

First mode: Baseline **4.70m**

Tx/ Rx

Rx alone

Second mode: Baseline **0.18m**

Cross-track IF 18cm

ONERA BUSARD: X band radar

Porteur : Busard Altitude : 1090 m (sol à env. 70m) Instrument : Caméra FLIR A325 (matrice µbolomètres 320x240 – ouverture 25°) Fauchée : 488m Résolution au sol : 1.4m

BUSARD

Bande Ka

- SAR mono polarisation
- Interférométrie single-pass
- Mode sondeur
- Bande X
 - SAR mono polarisation
- Infrarouge thermique
 - µbolomètres 320x240

Aircraft context

General system design features

Avion: Falcon 20

- 160 à 320 noeuds
- Autonomie : 2h30

Pods

- Longueur 230 cm
- Diametre 53 cm
- Charge Utile 120kg / pod
- Radome 10 MHz 18 GHz
- Capteurs
 - Jusqu'à 4 radars
 - 2 cameras
- Statut
 - Radars certifiés EASA

SAR bande P polarimétrique SAR bande L polarimétrique SAR bande X polarimétrique Caméra de contexte CamV2 Caméra HS Hyspex VNIR

Chef de projet: P Dreuillet

Responsable instrument: Olivier Duplessis

L'évolution de SETHI

2005 – 2007 → Développement

- 2007 Premier vol de validation SAR en bande P, en bande L, en bande X
- 2008 Vol de validation du capteur en UHF-VHF
- 2011 SAR Bande X polarimétrique Intégration et premier vol pour caméra CamV2– Caméra Hyspex VNIR

2012 → Certification caméra CamV2– caméra Hyspex VNIR

Implentation du système

ONERA

Le pod

- 4 radars
- 7 certified configurations
- 2 fenetres optiques
- 4 elevation positioners
- Power supply 115V/400Hz 28V/DC
- Ruggedized embedded computer
- Sensors

Incidence angle

and increased with marked that

SETHI configuration

Left Pod VHF/UHF Band

Right Pod X + Band and optical camera

Les radars de SETHI

Radar	Р	L	X	
Center frequency (MHz)	340	1300	9500	
Instrumented bandwidth (MHz)	240	200	1500	
Best achievable resolution (cm)	62	75	10	
Polarisation	Full	Full	Full	
Tranmit peak power (W)	500	200	200	
Antenna	dipoles	patch array.	horns	
Elevation aperture	100°	30°	14°	
Azimuth aperture	50°	10°	14°	
Boresight	Left look.	Left or right look.	0°-80°	
Number of required channels for polarimetric mode	1	2	2	
Nb of available recording channels	4			
Maximum sampling frequency (GHz)	2			
ADC bandwidth(GHz)	3			
ADC dynamic (bits)	10			
data rate/channel (MB/s)	360			
Record capacity (TB)	1.6			

Caractéristiques des moyens optiques actuels

Caméras optiques	PELICAN (camV2)	HYSPEX	FLIR A325
Type détecteur	CD TDI	VISNIR: CCD SWIR: MCT	µbolometer
Domaine spectral (µm)	[0.4 - 0.9]	[0.4 - 2.5]	[8-12]
Nombre de bandes spectrales	Up to 8	160	1
Largeur de bande (nm)	62	VISNIR: 4.7 SWIR: 6	10
IFOV (mrad)	0.0648	VISNIR: 0.18 x 0.36 SWIR: 0.75 x 0.75	1.4
FOV (°)	26 x 20	VISNIR: 17 or 34 SWIR: 14	25
Nombre de pixels	7256 x 5452	VISNIR: 1600 SWIR: 320	320 x 240
Visée angulaire	oui	nadir	oui
ADC converter (bits)	12	12	8

L'originalité de SETHI

- Instruments haute-performance
 - Résolution Radar: 10 cm en bande X 75 cm en bande L 62cm en bande P
 - Polarimétrie: complète sur les 3 instruments radar
- Acquisitions multi-instrument
 - Bandes X, L et P, caméra multi-spectrale en simultanées
 - HySpex et radar sur le même vol
- Flexibilité des instruments
 - Altitude / résolution / forme d'onde / incidence
- Optique radar combiné
- Evolutivité

Imaging geometry

$(\mathbf{R}, \mathbf{G}, \mathbf{B}) = (\mathbf{L}-\mathbf{H}\mathbf{v}, \mathbf{P}-\mathbf{H}\mathbf{v}, \mathbf{X}-\mathbf{H}\mathbf{h})$

SETHI Bande X - très haute résolution

Illustrations à travers les campagnes récentes

• 2009: Campagne MUSARDE

- · Caractérisation des aérosols urbains, classification des matéraux urbains
- Contexte : RTRA ACCLIMAT
- Collaboration IGN
- Financement IGN/ONERA

• 2009: Campagne TropiSAR

- · Caractérisation de la forêt en bande P dans un contexte tropical
- Contexte de la mission spatiale BIOMASS de l'ESA
- Collaboration CESBIO, EDB, CIRAD, IRD
- Financement ESA/CNES/ONERA

• 2010: Campagne TuniSAR

- Etude du potentiel de la bande P en milieu aride
- Contexte de la mission spatiale BIOMASS de l'ESA
- Collaboration OASU
- Financement CNES
- 2011: Campagne Enviro
 - Occupation des sols et caractérisation de la végétation par fusion optique/radar
 - Collaboration MDT
 - Financement ONERA
- 2012: Campagne Surveillance maritime
 - Caractérisation de la réponse de l'océan
 - Financement CNES

Campagne MUSARDE: caractérisation des aérosols

Principe : Observation de matériaux identiques à la transitions ombre/soleil par rapport

<u>Précision intrinsèque</u> : $\Delta \tau < 0,1.\tau \pm (0,02+0,4.\tau)$, comparable au produit MODIS <u>Principales limitations</u> : modèle vecteur, conditions de ciel clair, climatologie d'aérosols urbains, temps de calcul important

OSIS: remote sensing code for estimating aerosol optical properties in urban areas from very high spatial resolution images, Colin Thomas, Xavier Briottet, and Richard Santer, APPLIED OPTICS / Vol. 50, No. 28 / 1 October 2011

Remote sensing of aerosols in urban areas from very high spatial resolution images: application of the OSIS code to multispectral PELICAN airborne data, Colin Thomas, Xavier Briottet, and Richard Santer, IJRS, accepted

Classification in urban area: optical properties retrieval in the reflective domain - ICARE

PELICAN Images: 8 bands

Reference classification

Classification with Flat surface assumptions Classification taking into account the DEM

78%

Using a DEM with our ICARE reflectance retrieval tool improve the classification up to 78%

"ICARE: A physically-based model to correct atmospheric and geometric effects from high spatial and spectral remote sensing images over 3D urban areas", S. Lachérade, C. Miesch, D. Boldo (IGN), X. Briottet, C. Valorge (CNES), H. Le Men (IGN), Volume 102, Numbers 3-4 / December, 2008, Special Issue on CAPITOUL Experiment (Special Editors: L. Gimeno, V. Masson and A. J. Arnfield), Meteorology and Atmospheric Physics Publisher Springer Wien, pp 209-222

Campagne TropiSAR: Forêt tropicale et SAR Bande P

The in-situ database based on permanent plots

managed by Guyafor project (L Blanc and J Chave)

Censused data 28 plots – 157 ha 98200 measured trees Diameter > 10cm Biomass ranging from 100t/ha to 500t + /ha

Forêt tempérée

Hauteur: 25 -30m Forêt plantée et mono-espèce Parcelles homogènes Biomasse < 150t/ha Terrain plat

- Forêt tropicale
- Hauteur: 25 -50 m
- Espèces variées
- Biomasse < 600t/ha
- Topographie marquée

Campagne TropiSAR: Marais de Kaw

Campagne TropiSAR: Estimation de la hauteur sol sous couvert végétal

Estimation de la hauteur sol sur données réelles : Forêt Tropicale

Sol Lidar

Sol PolInSAR

Hauteur phase HH

ibec et al., IGARSS 2012

TuniSaR 2010: cartographie de sub-surface – SAR bande P

Paillou et al., "The TUNISAR experiment: Flying an airborne P-Band SAR over southern Tunisia to map subsurface geology and soil salinity," PIERS 2011, Marrakesh, Marocco, march 2011

Campagne ENVIRO 2011: Fusion optique/ radar

Campagne ENVIRO 2011: Image hyperspectrale (RVB)

Illustrations: Occupation du sol par attributs spectraux

Méthode : Explorer la diversité des attributs

Campagne Surveillance Maritime

Bande X polarimétrie complète

Etude système du futur satellite

Angelliaume, S.; Durand, P.; Souyris, J.C.; , "Ship detection using X-band dual-pol SAR data," IGARSS, 2011 IEEE International , vol., no., pp.3827-3830, 24-29 July 2011

Perspectives

- Les capteurs imageurs aéroportés ONERA
 - Busard: facile à mettre en oeuvre pour instrumentation légère
 - SETHI: Offre étendue de capteur
 - Simultanéité optique radar
 - Instruments haute performance
 - Flexibilité et évolutivité
- Les applications
 - Préparation de missions spatiales
 - BIOMASS
 - Surveillance maritime
 - MISTIGRI
 - HYPXIM
 - Exploration de nouveaux concepts
 - Fusion de données multi-fréquences (radar/optique, ...)
 - · Pan-sharpening avec image hyperspectrale
 - Tomographie SAR et PolInSAR multifréquence
 - Potentiel de la très haute résolution
 - Analyse en milieu urbain (classification, gestion des ombres, correction atmosphérique...)
- Les perspectives
 - Imageur hyperspectral Sysiphe [0.4 11 μm] : 2013
 - Lidar multiécho à onde complète : 2013
 - Projet LIMA : système de traitement et d'archivage données aéroportées optiques (participant PTSC) : 2013
 - SAR Ku sur SETHI en 2013

