Contribution des aérosols à l'extinction du rayonnement visible dans le cycle de vie du brouillard

<u>Thierry Elias</u>, Dominique Jolivet, **HYGEOS**, Lille Jean-Charles Dupont, Martial Haeffelin, **IPSL**, Palaiseau Frédéric Burnet, **CNRM/GAME**, Toulouse

SIRTA: platform hosting the ParisFog field campaign, instrumentation, and database HYGEOS: Extraction, generation of fog and aerosol data set

PreViBOSS applied research project (10/2010 – 09/ 2013) 500 k€ financed by the RAPID scheme (DGA/DGCIS for private-public)

Data acquisition: ParisFog (3 6-month campaigns !) Instrumentation 135 k€ (IPSL+CNRM) 12 months staff experiment and data processing 55 k€ (IPSL+CNRM) 35 months study 170 k€ (HYGEOS)

Prévision de la Visibilité dans le cycle de vie du Brouillard à partir d'Observations Sol et Satellite

Objectives

HYGEOS

Extension of the database 'Visibility in the fog life cycle' (SIRTA+CNRM) Exploitation of existing satellite products (EUMETSAT/SAF) (HYGEOS) Identification of predictors to describe & forecast visibility (few hours) (HYGEOS+IPSL+CNRM) According various experimental set-ups and fog types (HYGEOS+IPSL+CNRM)

Observation of particle properties to improve the visibility forecast in mist and fog

AEI, mars 2012, Paris

Difficulties to forecast fog.

Importance to forecast fog: danger for transport activities + economical impact (~ tornadoes [Gultepe et al., 2007])

Difficulties:

Fog is local event, highly heterogeneous in space, which depends on synoptic conditions as well as surface conditions and local meteo

Fog prediction techniques:

- Manual: radiosonde + NWP + local surface observations
- Statistical: depends on available information
- Nowcasting: satellite imagery + surface observations [Guidard and Tzanos, 2007]

- Numerical (1D and 3D): needs fine vertical resolution near the surface, fine horizontal reso for orography, soil, water, vegetation, and many processes to model:

Processes (Gultepe et al. [2007] quoting Duynkerke [1991]):

« ... Cooling of moist air by radiative flux divergence, mixing of heat and moisture, vegetation, horizontal and vertical wind, heat and moisture transport within soil, horizontal advection, and topographic effects; he also emphasized that atmospheric stability location, and season affect the contributions from each factor. »

« Once the fog has formed, there are additional processes affecting the fog development such as longwave radiative cooling at the fog top, fog microphysics, shortwave radiation, and turbulent mixing. »

- 1) Methodology and definitions
- 2) Validation of the particle microphysical properties
- 3) Contribution of several size classes to extinction in the fog life cycle
- 4) Relation extinction liquid water content in fog
- 5) Microphysical definition of fog and mist

1. Definitions

Fog life cycle and particles.

Fog life cycle: clear sky -mist – fog – mist - clear-sky

Several visibility regimes (convention): Fog: visibility < 1000 m Mist: 1000 < visibility < 5000 m Clear-sky: visibility > 10 km

Particles:

Aerosols (SMPS+WELAS) Hydrated aerosols (WELAS) Droplets (WELAS+FM100)

1. Methodology

Particle extinction coefficient: computed and observed.

1. Methodology

Extinction reproduced in different regimes.

1. Methodology

Ambient size distribution in all regimes: instrumental association.

AEI, mars 2012, Paris

2. Validation of the particle microphysical properties Particle extinction reproduced in all regimes.

November 2011

2. Validation of the particle microphysical properties

Particle extinction reproduced in all regimes.

2. Validation of the particle microphysical properties

Particle extinction reproduced in fog.

Validated cases: 0.8 < ratio < 1.5

3. Contribution of several aerosol size classes to extinction *Variability in the fog life cycle*.

3. Contribution of several aerosol size classes to extinction Variability by the interstitial aerosols in fog.

4. Relation Liquid Water Content (LWC) - Visibility

All cases.

5. Mist and fog description

Visibility in mist and fog.

FOG: LWC < 7 mg m⁻³

Frequency distribution of Visibility by DF. fog LWC regime. 201111 100 ViBOSS project 269 342 +-80 Number of values 60 . . 40 20 0 2000 2500 3000 500 1000 1500 Visibility (m) Visibility (m)

MIST: visibility < 5000 m and LWC < 7 mg m⁻³

5. Mist and fog description Droplets D > 2.5 μm.

5. Mist and fog description

Validated and non-validated cases: fog homogeneity.

Experiment

Instrumental set-up ok for following contribution of different aerosol size classes to extinction in fog life cycle Except for non homogeneous fog: droplets contributing to extinction are not observed by FM100 Validated/non-validated: 2 visibilimeters / meteo mast

Improvement: Instrument to measure 100-500 nm aerosols in ambient conditions Study the impact of relative humidity on dry size distribution measured by SMPS

Mist

Visi=3500±1000 m, concentration=260±150 cm⁻³ hydrated aerosols

Fog

LWC < 7 mg m⁻³ (10-20 μm droplets < 4 cm⁻³, 20-40 μm droplets < 0.3 cm⁻³) Validation for homogeneous fogs Visi=350±270 m, LWC=60±60 mg m⁻³ Importance of interstitial aerosols: 18±10% extinction (>30% in low LWC fogs) In average twice more hydrated aerosols in fog than in mist (> 800 cm⁻³ in dense fogs) ~80 cm⁻³ droplets

2. Validation of the particle microphysical properties

Particle extinction reproduced in all regimes.

