Drones et instrumentation miniaturisée Session 'Vecteurs et instrumentation embarquée'

G. Roberts^{1,2}, G. Cayez³, R. Calmer¹, K. Sanchez², P. Crispel¹, F. Lamroui¹, S. Barrau¹, F. Julien¹, S. Defoy¹, F. Burnet¹

1. Centre National de Recherches Météorologiques, Toulouse, France

- 2. Scripps Institution of Oceanography, La Jolla, CA, USA
- 3. École Nationale de la Météorologie, Toulouse, France

AEI, 17 October 2017, IFREMER, Brest

Motivation for using UAS

In-situ observations are needed • to extend ground-based measurements • processes in the lower 5 km of the atmosphere • in remote or inaccessible locations

Long-term sampling / monitoring (seasonal cycles)

- Track complete life cycle of event (process studies)
- Formation flying (multi-dimensional observations) • Simultaneous, mission-specific sampling • high-resolution spatial / temporal measurements

UAS Projects at CNRM

1. VOLTIGE (Vecteurs d'Observation de La Troposphère pour l'Investigation et la Gestion de l'Environnement), ANR, 2013 – 2015 • Feasibility of using multi-drone observations to study fog events

2. BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding), EU FP7, 2013 – 2018 • Reducing the uncertainty of aerosol-cloud interactions in climate change assessments

3. SkyScanner, RTRA-STAE, 2014 – 2017 • Develop at strategy for deploying a fleet of UAVs to study the evolution and entrainment mixing of clouds

4. STRAP (Synergie Transdisciplinaire pour Répondre aux Aléas liés aux Panaches volcaniques), ANR, 2014 – 2017 • Study the composition and evolution of aerosols and gases of volcanic plumes

5. BACC+ (**BA**sse Couche Campagne pour les études à fines échelles), Météo-France, 2015 – 2018 • Pilote phase project to study the development of the boundary layer and fog; toward an operational program.

6. MIRIAD (Mesures sclentifiques de flux de su**R**face en mIlieu m**A**ritime embarqué sur **D**rone), FEDER Région Midi-Pyrenées, 2015-2018 • Marine aerosol and energy fluxes from the surface to top of boundary layer

7. NEPHELAE (Network for studying Entrainment and microPHysics of couds using Adaptive Exploration), ANR, 2018-2021 • Adaptive sampling using a fleet of UAVs to study the evolution of cloud life cycles.

UAV Fleet at CNRM

Operated by CNRM / ENM

Summary of UAS Flights at CNRM

- 10 different types of platforms (all fixed-wing)
- Weather conditions: winds up to 17 m/s, snow, ice, rain, fog; up to 3350 m.agl

charge sensor

Backscatter cloud sensor

UAV payloads

aerosol inlet

5-hole probe

temperature, moisture, pressure, airspeed

 $\uparrow \& \downarrow visible$ SW flux

At research station

Video camera

aethelometer

data acquisition

PPZ autopilot

optical particle counter

mCCN counter

UAS Payloads at CNRM

down)	→ Albedo	down)		
Aerosol / charge Aerosol physical properties		Aerosol Inlet	σ_e → n _D x r ² ; F _↑ / F _↓ → Albedo	
Optical Particle Counter	Number concentration $(D_p > 0.3 \ \mu m)$	Cloud / charge	Cloud microphysical properties	
Charge Sensor	Atmospheric charge	Cloud sensor (2-I /	$\sigma_{\rm e}$ $ ightarrow$ $n_{\rm D}$ x r ² ; R _{eff}	
Aerosol Inlet	Size distribution $(0.3 <$	polarization)		
	$D_p < 3 \ \mu m$)	Charge sensor	Atmospheric charge	

UAS Operations (Mace Head)

UAS Research Flights

ightarrow Research flights probe atmosphere from surface to 5 km, in-clouds, BVLOS \leftarrow

Each component must work ...

... to get to the science.

VOLTIGE

<u>V</u>ecteurs d'<u>O</u>bservation de <u>La T</u>roposphère pour l'<u>I</u>nvestigation et la <u>G</u>estion de l'<u>E</u>nvironnement

- Deploying UAS to study the atmosphere (focus on fog)
- Temperature profiles in Les Landes generally well characterized by AROME 2.5km operational model
- In-situ profile profiles show strong inversion not captured in model.

Linking ground-based & satellite obs.

'top-down' closure
 → compare R_{eff} derived
from satellite

'bottom-up' closure → use w and CCN spectra to find cloud droplet number

Related publications: doi:10.1002/2015JD024595; doi.org/10.5194/amt-2017-233; doi: 10.1175/BAMS-D-15-00317; doi: 10.1038/nature22806

Mace Head case study

Mixing of aerosol in MBL

(m.agl) z (m.agl)

1000

500

 10^{-1}

10⁰

10¹

N (cm⁻³)

 10^{2}

 10^{3}

0

Ν

1000

500

aerosol

gradient

50

Aerosol mass (ug m⁻³)

100

- Cloud layers often at ~ 400 and above 2000 m at Mace Head
- Aerosol not always well mixed in lower MBL; rarely mixed to upper level clouds at 2000 m

Cloud base updrafts / CCN spectra

model (Russell et al., 1998).

BACCHUS

CCN

Comparing models and observations of cloud properties

- In-situ measurement of cloud extinction by UAV
- Difference between modelled and observed cloud properties often related to entrainment or decoupling in the atmosphere.
- Simulations overestimate cloud radiative fluxes
 (up to ~90 W m⁻² in our cases in Ireland)

Satellite – in-situ comparison of cloud properties

- Effective radius profiles show relatively good agreement between satellite and simulation
- Cloud droplet concentrations derived from Hoppel-minimum diameter and NPP satellite within 30% of model

к. Sanchez et al., *ACP*, : doi:10.1002/2015JD024595

Aerosol-cloud closure (Cyprus)

Dust Transport Over Cyprus

Multiple layers of dust transport from Arabian Peninsula and Sahara Desert

turbulence probe (new design)

Calibration shows higher sensitivity compared to Aeroprobe

MIRIAD: système de Mesures sclentifiques de flux de su**R**face en m**I**lieu m**A**ritime embarqué sur **D**rone

- 1. Identifier les sources et les puits des aérosols marins
- 2. Caractériser la structure verticale de l'atmosphère et d'évaluer le mélange vertical des aérosols dans la couche limite marine.
- 3. Vols rasants très proche à la surface (< 10 m; couplage d'un radar altimétrique avec l'autopilote)

Greg Roberts (CNRM/GMEI/MNPCA), **Fredéric Burnet** (CNRM/GMEI/MNPCA), **Sébastien Barrau** (CNRM/GMEI), **Patrice Medina** (LA), **Pierre Durand** (LA), **Michel Gavart** (Boréal)

MIRIAD

Primary marine aerosol in surf zone

- Transects across surf zone (Montalivet)
- Spiral vertical profiles from ~ 7 to 150 m.asl
- Aerosol size distribution (0.5 < Dp < 10 um; RH < 40%), PTU

Sea salt emissions (surf zone)

- Steep gradient in aerosol concentration < 30 m.asl
- Number concentrations (Dp > 0.5 um; red): ~ 200 / cc in surface layer; ~ 60 /cc in boundary layer
- Aerosol mass (black): ~ 1.5 ug / m³ surface layer; < 0.2 ug / m³ in boundary layer

Flux estimate: F = D (dC / dz):: $\rho \sim 2 g/cm^3$; $D \sim 10^{-2} m^2 / s$

→ F ~ 1 ng / m².s (PMA surf zone)
 (note: not all mass measured
 – see next slide)

Flux Measurements Using UAS

Flux

Z

Campagne à Cerdagne :

- vols jusqu'à 1000m/sol (tous les 20 min)
- étudier l'évolution de la couche limite

TP ENM : vols et traitement de données

P2OA CRA, Lannemezan

G. Cayez, F. Lohou (ENM et Université de Tarbes)

All-sky photogrammetry techniques to georeference a cloud field

P. Crispel, G. Roberts, (AMTD, doi.org/10.5194/amt-2017-203)

NEPHELAE

NEPHELAE: Network for studying Entrainment and microPHysics of cLouds using Adaptive Exploration

> ANR 2017 01/2018 - 06/2021

Atmospheric science driven with focus on cloud microphysical processes

- Identify dominant entrainment mechanism and timescale of cloud development and onset of precipitation
- Assess impact of aerosol on entrainment and precipitation as well as feedback mechanisms

NEPHELAE aims to develop a UAS fleet with decentralized cooperative sampling

- inter-UAV communication
- Adaptively plan and control fleet to maximize utility of gathered data

ISARRA 2018 9 – 12 July Boulder, CO, USA

International Society for Atmospheric Research using Remotely piloted Aircraft

Take Aways

Modular UAV payloads for science missions to study aerosol, clouds, atmospheric state

- Sea salt fluxes estimated from near-suface UAV flights.
- High resolution (temporal and spatial) vertical profiles to study evolution of boundary layer
- Next steps: Sea salt fluxes, volcano emissions, UAV fleet to study evolution of clouds

acknowledgements

UAS Accidents

http://www.auvsi.org/SafetyStatisticsofFlyingUASforUSAF

- Reducing accidents a result of experience and continuous improvements
- Predator first mass-use UAS; higher accident rate (dangerous situations)
- Global Hawk and Reaper are on par with manned airframes (U-2 and F-16)
- ightarrow UAS attain accident rates similar to manned airframes without risk to crew

Risk Assessment

In aviation, not possible to eliminate all risks (ICAO Safety Course)

Catastrophic	-	5	10	15	20	25
	5	Review	1 in an	Unacceptable	Unacceptable	Unacceptable
Hazardous	4	4 Accepta	8 Review	12 Unacceptable	16 Unacceptable	20 Unacceptable
Major	3	3 Accepta	6 Review	9 Review	12 Unacceptable	15 Unacceptable
Minor	2	2 Acceptable	Acceptable	6 Review	8 Review	10 Unacceptable
Negligible	1	1 Acceptable	2 Acceptable	3 Acceptable	4 Acceptable	5 Review
	0	Extremely improbable	Improbable	Remote	Occasional	Frequent
		1	2	3	4	5

Example:

- Assess risk during RPAS flights (straight and level) over a road at Lannemezan; Severity
 of Consequence → Major to Hazardous
- Probability of RPAS impact on road (infrequent traffic) → ~ 10⁻⁵ (Improbable);
 (7 m road / 1600 m leg) x (27 legs / flight) x (2 failures / 500 flights) x (1 vehicle / 30 s)

+ Adapt check lists and flight procedures to mitigate risk to acceptable level

UAS Cost Comparison

Future for UAS in atmospheric science

Increased reliability (all weather / take-off & landing)

- Ability to launch from remote platforms (ships or buoys)
- Coordinated flying with multiple platforms (decentralized architecture)
- High altitudes (most platforms limited to < 5 km)
- Long duration, long distance (> 8 hours; 1000+ km)
- Payload engineering & miniaturizing instruments
- Integration of UAS into civilian airspace