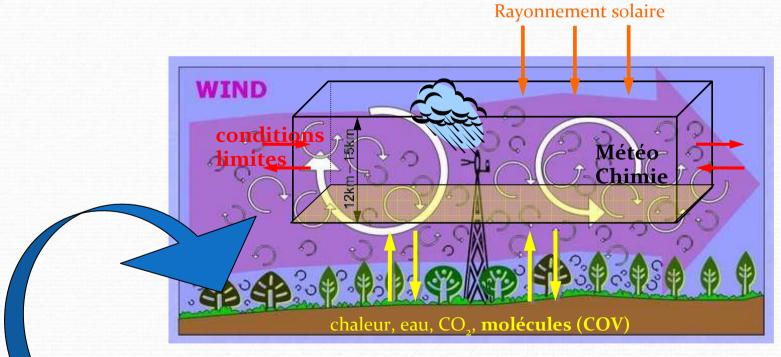
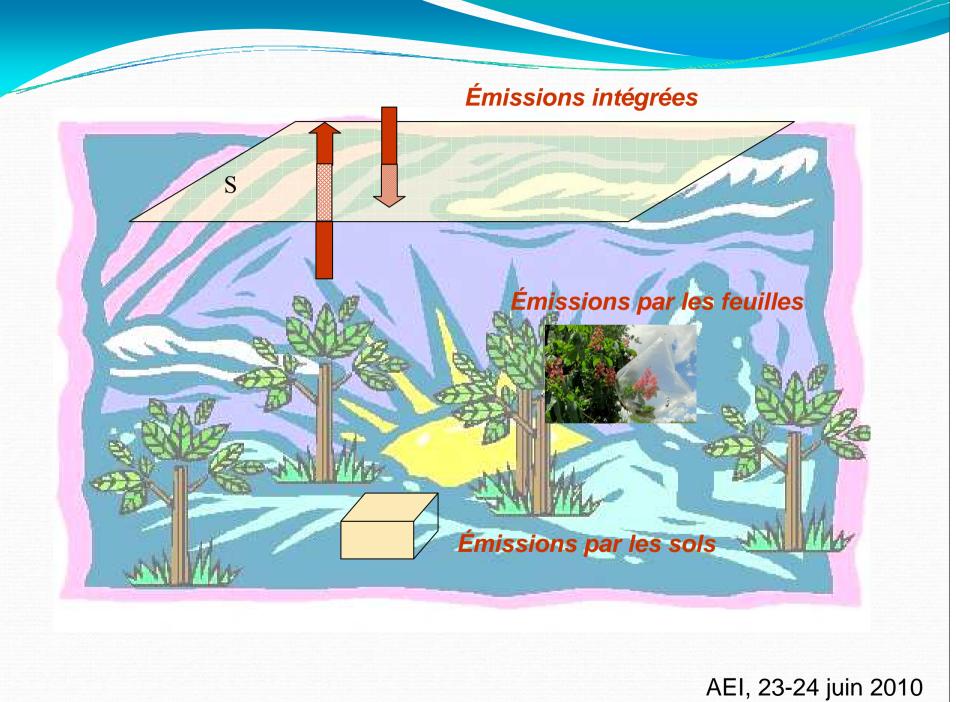


Mesure par Échantillonnage Disjoint des Échanges d'Espèces en trace


R. Baghi (1), P. Durand (1), <u>C. Jambert</u> (1), C. Jarnot (1), D. Kouach (2), L. Liu (1), J-M. Martin (1), R. Mathon (1, 2), D. Serça (1), G. Sokoloff (1), N. Striebig (2)

- (1) Laboratoire d'Aérologie, UMR CNRS 5560, Université de Toulouse, 14 av. E. Belin, 31400 Toulouse
- (2) Groupe d'Instrumentation Scientifique, Observatoire Midi Pyrénées, 14 av. E. Belin 31400 Toulouse

- Introduction
- Méthodes de mesure de flux
 - EC
 - DEC
- MEDEE
 - Système de prélèvement
 - Synoptique fonctionnel
 - Etat d'avancement
- Campagnes de mesure


Introduction

Les études de chimie atmosphérique (locales et régionales) s'appuient sur des modèles de dynamique-chimie

Besoin de déterminer les flux à la surface

(Tin Muskardin, juillet 2008)

Introduction

 Développement au Laboratoire d'Aérologie d'un instrument sol ou aéroporté, pour la mesure des émissions par la végétation des composés organiques volatils (COV).

MEDEE (Mesure par Echantillonnage Disjoint des Echanges d'Espèces en traces)

• Mise en œuvre 2010-2011-2012 sur des zones méditerranéennes dans le cadre du programme CHARMEX, qui est l'une des composantes du chantier Méditerranée piloté par l'INSU.

CharMEx
The Chemistry-Aerosol Mediterranean Experiment

Méthodes de mesure des flux turbulents

• La méthode Eddy Covariance (EC):

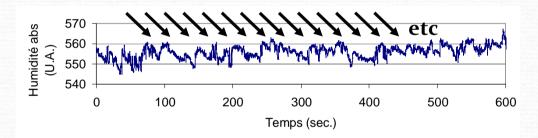
 $\$ Le flux vertical moyen turbulent : $F = \omega'.X'$

Avec w': fluctuation de la vitesse verticale du vent

X': fluctuation du paramètre considéré (ρ' ou C')

- 10 minutes de mesure,
- échantillonnage à 20 Hz, → soit 12 000 valeurs

Difficulté:


Peu d'analyseurs capables de réaliser des mesures à des fréquences suffisantes

(ν_{min} ~10 Hz) avec la sensibilité adéquate AEI, 23-24 juin 2010

Méthodes de mesure des flux turbulents

Méthode Disjunct Eddy Covariance (DEC)

Principe: Calcul de la covariance (i.e. du flux) à partir d'un <u>nombre réduit</u> de valeurs du paramètre X par rapport à la méthode classique (→ 200 fois moins)

$$F = \overline{w_i ' X_i '}$$

w': fluctuation de la vitesse verticale du vent X': fluctuation du paramètre considéré (ρ' ou C')

Mise en œuvre :

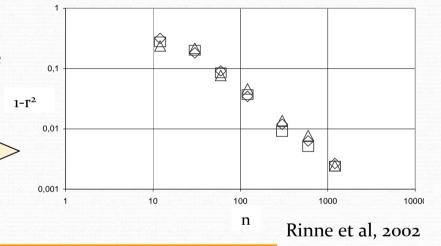
<u>Capture</u> rapide des échantillons, pour en analyser le contenu, et corréler ce résultat avec la vitesse w' mesurée au moment de la capture

w est mesurée à la fréquence classique en EC (10 à 20 Hz)

Échelle intégrale de la turbulence : Les échantillons doivent être séparés par δt

suffisants pour être indépendants et que l'échantillonnage soit représentatif des cellules AEI, 23-24 juin 2010

turbulentes


Méthodes de mesure des flux turbulents

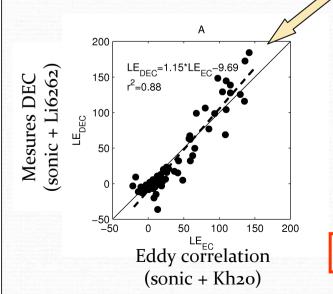
Simulation de la DEC

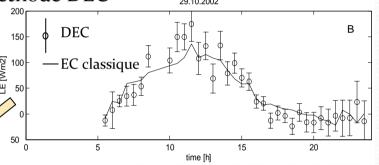
Exemple de corrélations entre les flux calculés sur des échantillons « complets » et des flux calculés sur un nombre réduit de valeurs *n*.

Le paramètre représenté est $1 - r^2$:

On constate que $r^2 > 0.9$ dès que n > 60

→ 60 échantillons au cours des 10 min sont suffisants pour obtenir un flux avec une incertitude de l'ordre de 10 %


- → soit, 1 échantillon toutes les 10 s
- → temps d'intégration suffisant pour :
- améliorer la sensibilité des instruments moyennement rapides (~ 1 s)
- et/ou pour faire des mesures précises de C'


Méthodes de mesure des flux tu

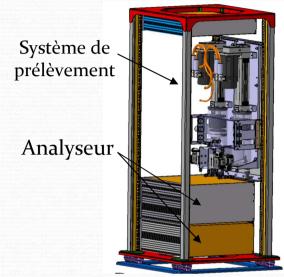
Validation directe de la méthode DEC

Comparaison du flux d'évaporation mesuré sur une journée par la méthode des corrélations « classique » et la méthode DEC

→ Validation de la méthode

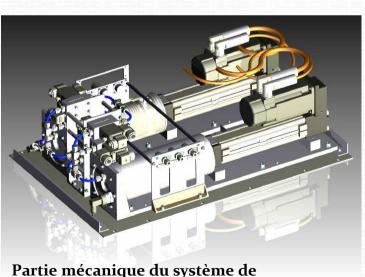
Rinne et al, 2008

Mesures réalisées avec prototypre développé au CNRM

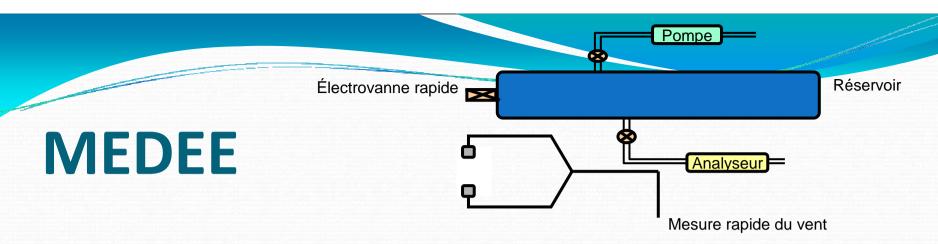

- mesure au sol
- mesure de la vapeur d'eau
- chambre de prélèvement en PVC
- analyse avec recirculation échantillon

Accords équivalents pour la mesure DEC et la simulation avec la

EC

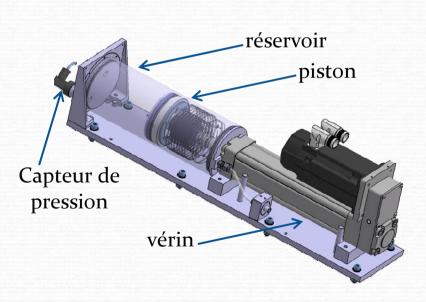

<u>Cahier des charges</u>:

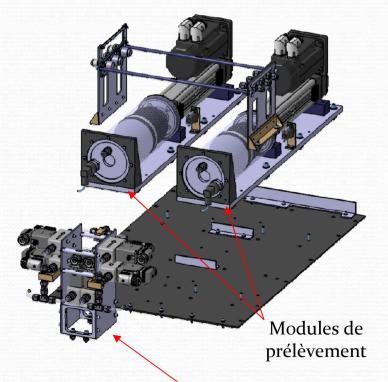
- Prélèvement rapide de l'échantillon (0,2 s)
- Transfert à pression constante vers analyseur
- Matériaux inertes aux COV (PTFE, inox 316L)
- Synchronisation
- Compatibilité avion



Baie 19" ATR-42

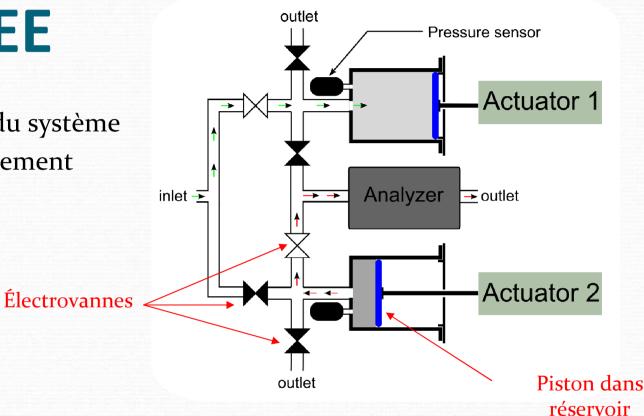
- Dispositif d'échantillonnage
- Système de commande et d'acquisition
- Mesure de w (anémomètre sonique ou capteurs avion)
- Analyseurs
 - FIS,
 - PTR-MS, SPIRIT, ...?

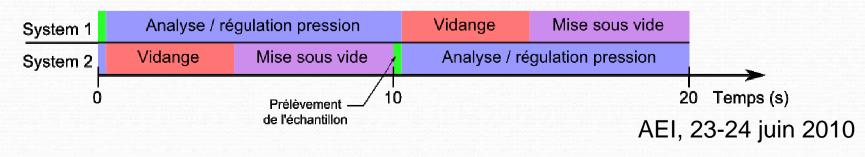



Partie mécanique du système de prélèvement AEI, 23-24 juin 2010

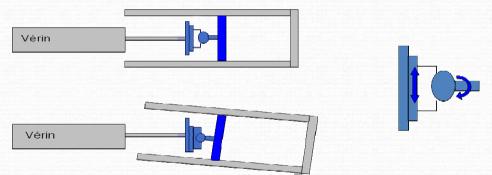
Cahier des charges fonctionnel

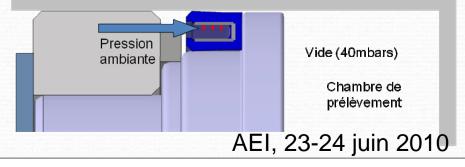
Dispositif d'échantillonnage



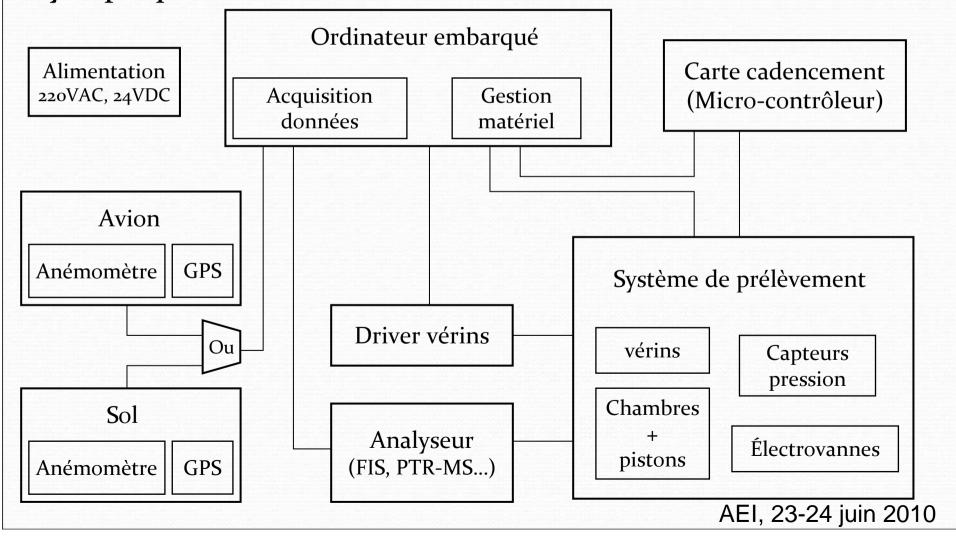

AEI, 23-24 juin 2010

Module électrovanne


 Schéma du système de prélèvement


Cycles de fonctionnement alternés

- Détails techniques
 - Alignement vérin/réservoir
 - Système isostatique avec une liaison axiale adaptée



- Niveau de vide
 - Étanchéité assurée par un joint à lèvre
 - Contact non lubrifié
 - Efforts de frottement limités

- Système de commande et d'acquisition
 - PC embarqué (pilotage et acquisition)
 - Micro-contrôleur (gestion du cadencement)
 - Carte d'acquisition (récupération des signaux)
 - Driver intelligent des vérins (asservissement du piston sur la pression)

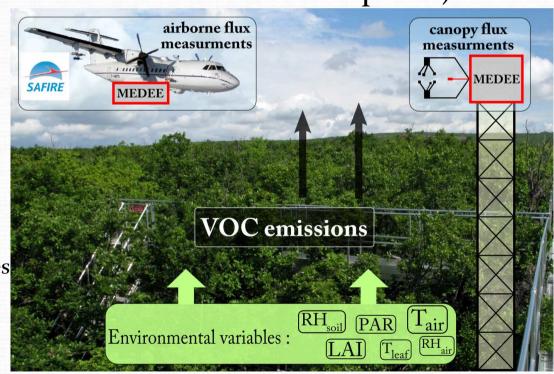
Synoptique fonctionnel

• État d'avancement :

Montage (juin 2010)

- État d'avancement : 6 hPa 0.8 hPa/s
 - Tests (juin 2010)
 - Tenue au vide (niveau de vide, taux de fuite, usure joints)
 - Vitesse de prélèvement
 - Régulation de pression
 - Cadencement des deux modules de prélèvement
 - Tests de sécurité
 - Consommation électrique
 - Couplage MEDEE/analyseur

Montage et tests laboratoire


Campagnes de mesures

• Première mise en œuvre de MEDEE/FIS prévue pour Juillet 2010 à l'Observatoire de Haute-Provence sur une forêt de chênes blanc (Quercus Pubescens : émetteur isoprène).

Autres campagnes prévues :

- Tests avion (2011)
- Mesures au sol (étés 2011, 2012)
- Mesures avion (2012), MEDEE/PTR-MS

L'ensemble des mesures cible les zones méditerranéennes dans le cadre du programme CHARMEX

Financement MEDEE - situation juin 2010

Année	Source	Montant (k€ HT)	Affectation
2007-08	LEFE/CHAT	15	Etude - baie ATR - missions
2009	UPS/BQR	11	Equipement - stage
2010	LA	19	Equipement - stage
2010	MISTRALS	15	Equipement - Missions
2011	MISTRALS	??	??

Equipe de projet MEDEE

C. Jarnot - (IE LA) coordinateur technique, porteur de projet

Jean-Michel Martin (Al LA) développeur électronique

Yves Meyerfeld (IE LA) développeur informatique

GIS OMP (Driss Kouach - Nicolas Striebig)

Lei Liu (PFE ingénieur 2009 - mécanique)

Vincent Lagorse (Projet Al météo 2009 – informatique)

Romain Mathon (PFE ingénieur 2010 - mécanique)

Guillaume SOKOLOFF (Projet IUP 2010 – informatique)

Romain Baghi (doctorant LA) – coordination scientifique

Corinne Jambert (MdC LA) - coordination scientifique

Dominique Serça (MdC LA)

Pierre Durand (DR LA) responsable d'équipe

Contribution SAFIRE pour intégration et certification

MERCI

